

A PFAS Primer: Terminology, Sources, Regulations and Treatment

Brian Yates, PE Monday, June 3, 2019

What you're in for...

- Per- and polyfluoroalkyl Substances (PFAS)
 - What are they?
 - Where are they found?
 - Why are they bad?
 - What are the USEPA and States doing?
 - How do I treat for them?
 - What should I be doing?

Delaware News Journal

The Intercept

U.S. DoD Elsworth AFB

Per and Polyfluoroalkyl Substances (PFAS) - Terminology • Overview of PFAS

- Over 5,000 <u>exclusively anthropogenic</u> compounds (only a handful can be analyzed commercially)
- Similar to PCBs in that they are a <u>class of compounds</u> with different structural configuration, <u>halogen substitution</u> positions, and often <u>found as mixtures</u> of many different compounds (cf. PCB Aroclors)
- Terminology
 - PFAS is plural; "PFASs" is incorrect.
 - S = Substances; "PFAS Compounds", "PFAS Substances", etc. is redundant
 - The acronym PFC refers to <u>PerFluorinated Compounds</u>; it is not inclusive of all PFAS and refers to compounds that are not PFAS.
 - PFAS ≠ PFOS ≠ PFOA

We will use the term "moiety"

Each of two (or more) parts into which a thing can be divided

Perfluoroalkyl Moiety

The chemical part of a specific PFAS that is <u>fully fluorinated</u>

This is the "forever part" of PFAS

This is the Epoxy-coated rebar

Per and Polyfluoroalkyl Substances (PFAS)

Perfluoroalkyl Compounds (C_nF_{2n+1}-R)

Hydrophobic/Lipophobic Hydrophilic

Perfluorooctane sulfonate (PFOS)

University of Notre Dame

Per and Polyfluoroalkyl Substances (PFAS) - Terminology

EtFOSE

PFOS

PFO/

- Other distinctions
 - Long Chain vs. Short Chain
 - 8 or more carbons for perfluoroalkyl carboxylates
 - 7 or more carbons for perfluoroalkane sulfonates
 - Acid vs. Anion
 - Example: Perfluorooctanoate (anion form) and perflurooctanoic acid (acid form) - Both use the same acronym!
 - Linear vs. Branched
 - Linear compounds have a straight carbon backbone (only one isomer)
 - Branched compounds have at least one carbon bonded to more than two carbons within the backbone (many isomers)

Per and Polyfluoroalkyl Substances (PFAS) - Physical and Chemical Properties

Property	Unit	PFOS	PFOA	TCE
CAS Number	-	1763-23-1	335-67-1	79-01-6
Molecular Formula	-	$C_8HF_{17}O_3S$	$C_8HF_{15}O_2$	C ₂ HCl ₃
Molecular weight	g/mol	500	414	131
Water Solubility	mg/L at 25°C	680	9,500	1.1×10^{3}
Boiling Point	°C	260	192	87
Vapor Pressure	mm Hg at 25°C	0.002	0.525	9.2 × 10 ³
Log Organic				
Carbon	-	2.57	2.06	1.93
Partitioning				
Coefficient (K _{oc})				

Per and Polyfluoroalkyl Substances (PFAS) - Physical and Chemical Properties

Fluorine – most electronegative element in the periodic table C-F bond – strongest covalent bond in organic chemistry

Resulting Chemical/Biological Properties:

- High thermal stability (400°C 1,000°C)
- High chemical stability (low reactivity even with highly reactive free radicals)
- Strong acidity (pK_a 1.0 3.0)
- Zwitterionic, amphoteric, lipophobic/proteinphilic, surfactant properties, <u>hydrophobicity depends on chain length and head groups</u>.

Long half-lives in the human body (5-8 years)

Per and Polyfluoroalkyl Substances (PFAS) -Production, History, Use, and Environmental Sources

- Production and History
 - Electrochemical Fluoridation
 - Developed in 1940s by 3M
 - Produces a mixture of linear and branched-chain isomers
 - Telomerization (telo = end [Greek])
 - Developed in 1970s
 - Produces exclusively linear PFAS with chain-length selectivity

Uses

- Products: textile coatings, paper products, food packaging, cookware, aqueous film-forming foams (AFFF) for firefighting
- Applications: aerospace, photographic imaging, semiconductor, automotive, construction, electronics, aviation, chemical polymerization aids

Per and polyfluoroalkyl Substances (PFAS) - Production, History, Use, and Environmental Sources

- Known direct emitters to the environment
 - PFAS manufacturing facilities (e.g., 3M, DuPont/Chemours)
 - Wastewater treatment plants (municipal/domestic and industrial)
 - Wastewater biosolids
 - Drinking water residuals
 - Landfill leachate (municipal and hazardous)
 - AFFF (especially at military and fire-fighting training grounds)

Per and polyfluoroalkyl Substances (PFAS) - Environmental Fate and Transport

- Extremely Persistent No effective conventional treatment methods for destruction/mineralization
- Essentially non-volatile at relevant environmental pH (anion form)
- Airborne sources are pure phase, or associated with aerosols or dust
- Longer chain PFAS tend to partition to soil organic (and mineral) phases, shorter chain PFAS partition to aqueous phase (large, dilute plumes)
- Precursors are generally less mobile than transformation products and can serve as on-going sources

Per and polyfluoroalkyl Substances (PFAS) - Human Exposure and Health Effects

What Happens After Exposure?

- PFAS are completely absorbed after oral exposure and distribute primarily in the blood serum, liver, and kidney with a half-life of 5-8 years
- End products of degradation (e.g., PFOS and PFOA) are chemically inert and not metabolized
- PFOS and PFOA are <u>protein</u>philic, and are <u>not stored in fat</u>
- PFAS are circulated in the kidneys and eventually excreted through urine and feces over several years after chronic exposure
- PFAS look like fatty acids to our bodies and interfere with lipid (fatty acid) metabolism in the liver (PPARα system)

Per and polyfluoroalkyl Substances (PFAS) - Human Exposure and Health Effects

- C8 Science Panel (Parkersburg, WV) is the most comprehensive single source of data regarding negative health effects of PFAS
- Health Effects Correlated to PFAS Serum Concentrations (C8 Science Panel)
 - High Cholesterol
 - Ulcerative Colitis
 - Thyroid Disease
 - Testicular Cancer
 - Kidney Cancer

Pregnancy-induced Hypertension (eclampsia, pre-eclampsia)

Per and polyfluoroalkyl Substances (PFAS) - Current Regulations

- Federal PFAS Regulations
 - Environmental Protection Agency (EPA)
 - 2002 Voluntary Stewardship Program
 - 2009 Short-term Provisional Health Advisory (200 ng/L PFOS, 400 ng/L PFOA)

- 2016 Lifetime Health Advisory (70 ng/L combined PFOS and PFOA)
- 2018 PFAS National Leadership Summit
- 2019 PFAS Task Force and Action Plan
- State-level Regulations
 - Currently 22 states have enacted some form of regulation of PFAS at state level (Ohio coming soon)

MCL v. LHA – Enforcement Matters

MCL (Maximum Contaminant Level)

- "Maximum level of a contaminant in drinking water at which no known or anticipated adverse effect on the health of persons would occur, allowing for an adequate margin of safety" (MCLG)
- "The highest allowable concentration of a chemical in drinking water for a lifetime of exposure" (MCL)
- Based on 70 kg adult consuming 2 L of water every day

LHA (Lifetime Health Advisory)

- "Reasonable, health-based hazard concentrations above which action should be taken to reduce exposure to <u>unregulated contaminants</u> in drinking water"
- No recommended "actions", no direction on implementing a sampling and monitoring program, no information on how contaminated drinking water affects customers

States with Current and Proposed PFAS Regulations in Water – October 2018

Groundwater

0.093 ppb - 71 ppb

LEGEND

STATE - First Year of Proposed Rules **PFAS** Regulated Matrices Regulated PFAS Concentration Range (ppb)

ALABAMA - 2016 PFOS, PFOA Drinking Water 0.07 ppb

ALASKA - 2016

PFOA, PFOS, PFBS, PFNA, PFHxS, PFHpA Drinking Water, Groundwater and Surface Water/ Effluent 0.07 ppb - 2 ppb

ARIZONA - 2017 PFOS, PFOA Drinking Water 0.07 ppb

CALIFORNIA - 2018

PFOA, PFOS Drinking Water and Groundwater 0.013 ppb - 0.07 ppb

CONNECTICUT - 2016

PFOA, PFOS, PFHxA, PFHpA, PFNA Groundwater 0.07 ppb

COLORADO - 2017 PFOA, PFOS Drinking Water 0.07 ppb

DELAWARE - 2016 PFOA, PFOS, PFBS Groundwater 0.07 ppb - 38 ppb

IOWA - 2016 PFOA, PFOS Groundwater 0.07 ppb - 1 ppb

MAINE - 2016 PFOA. PFOS Drinking Water, Groundwater and **Recreational Water** 0.05 ppb - 1.2 ppb

MASSACHUSETTS - 2017 PFOS, PFOA, PFBS, PFHxS, PFHpA, PFNA Drinking Water 0.07 ppb - 2 ppb

MICHIGAN - 2015 PFOS, PFOA Drinking Water, Groundwater, Surface Water/Effluent 0.011 ppb - 0.42 ppb

MINNESOTA - 2017

PFOA, PFOS, PFBA, PFBS, PFHxS

Drinking Water and Groundwater 0.027 ppb - 7 ppb

NEVADA - 2015

PFOA, PFOS, PFBS **Drinking Water** 0.667 ppb - 667 ppb

NEW HAMPSHIRE - 2016

PFOA. PFOS Groundwater 0.07 ppb

NEW JERSEY - 2015

PFOA, PFOS, PFNA Drinking Water and Groundwater 0.013 ppb -0.014 ppb

PFOA, GenX Drinking Water and Groundwater 0.14 ppb - 2 ppb

Data are from ITRC https://pfas-1.itrcweb.org/fact-sheets/ accessed October 30, 2018

Recent Actions at the State Level

- Pennsylvania (setting an MCL)
 - Statewide sampling plan to identify impacted drinking water supplies
 - More than 300 public water supplies based on proximity to common sources of PFAS, such as <u>military bases</u>, <u>fire training sites</u>, <u>landfills</u>, and <u>manufacturing facilities</u>
- Maine (convening a task force)
 - All biosolids will have to be tested for the presence of PFAS before being used as fertilizer or applied to land
 - Dairy farmers seeing PFAS in finished milk products have blamed biosolids applied to their land
- New Jersey (quarterly testing for PFAS)
 - The Department of Environmental Protection proposed drinking water limits of 14 ppt for PFOA and 13 ppt for PFOS
 - The regulation would put 39 public water systems over the limit for PFOA and 19 for PFOS
- North Carolina (PFAS testing network)
 - A bill banning their use in AFFF used for training
 - Repeal the so-called Hardison Amendment that prohibits the state from enacting laws that are more stringent than the federal government's

PFAS National Leadership Summit (May 2018)

Four Action Items Announced

- Initiate steps to evaluate the need for a <u>MCL</u>
- Beginning the necessary steps to propose designating PFOS and PFOA as <u>hazardous substances</u> through one of the available federal statutory mechanisms (CERCLA, RCRA, TSCA, CWA, CAA)
- Develop groundwater cleanup recommendations
- Develop toxicity values (oral reference doses) for Gen-X and PFBS

EPA PFAS Action Plan (February 14, 2019)

- EPA Priority Actions
 - Announced at PFAS National Leadership Summit
- Short-term Actions
 - Understanding an Addressing PFAS Toxicity and Occurrence
 - Identifying and Addressing PFAS Exposures
 - Risk Communication and Engagement
- Long-term actions
 - Listing PFAS on Toxic Release Inventory (TSCA)
 - Ambient Water Quality Criteria (CWA)
 - Regulation of Industrial Sources' Effluent (NPDES)
 - Nationwide Drinking Water Monitoring (UCMR)
 - Others
- State Actions (Collective Federalism)

Sampling and Analysis

- EPA 537.1 released in 2018 includes 18 PFAS compounds measurable in *drinking* water
- Modified EPA 537 includes other matrices such as soil and biosolids
- Other Methods
 - Particle-induced Gamma-ray Emission (PIGE)
 - Total Oxidizable Precursor (TOP Assay UC Berkeley)
 - Total Organofluorine Methods (TOF Battelle, UN-Reno)
- Analytical Method is LC MS/MS
- Restrictions on Sampling (develop a QAPP!)
 - Clothing (boots, gloves, rain gear)
 - Cosmetics
 - Sunblock and Insect Repellant
 - Food and Drink
 - Detergent
 - Sampling Bottles and Tubing
 - Field Supplies

The McCrone Group

Almance County

Per and polyfluoroalkyl Substances (PFAS) - Treatment Options

- Ineffective Conventional Treatment Processes
 - Conventional and Advanced Oxidation (with some exceptions)
 - Coagulation/Flocculation/Sedimentation (with some exceptions PerfluorAD)
 - Slow and Rapid Sand Filtration
 - Dissolved Air Floatation (with some exceptions)
 - Microfiltration/Ultrafiltration

Per and polyfluoroalkyl Substances (PFAS) - Treatment Options

Partially-effective Conventional Treatment (Concentration) Processes

- Activated Carbon (GAC/PAC)
- Ion Exchange (IX)
- Reverse Osmosis (R/O)

Per and polyfluoroalkyl Substances (PFAS) - Treatment Options

Emerging Treatment Processes

- Advanced Oxidation Processes (Oxidizing Free Radicals)
- Advanced Reduction Processes (Reducing Free Radicals)
- Sonolysis
- Plasma Treatment
- Next Generation Adsorbents (e.g., Carbon Nanotubes, Graphene, Polymeric Adsorbents)
- Biodegradation?

Clarkson University

Jurassic World, Legendary Entertainment

What Should Utilities Be Doing About It?

- There is no one-size-fits-all solution
- Balancing risk (financial, legal, customer)
- To sample or not to sample?
- Inclusion of PFAS in industrial pretreatment programs
- Evaluation of potential PFAS sources within sewershed
- OEPA will begin to request sampling of specific sites (e.g., triage of known users of AFFF and industrial users of PFAS)
- Certain large Ohio cities have begun testing industrial discharges from suspected PFAS emitters

BURGESS & NIPLE Engineers • Planners • Environmental Scientists

Questions or (PFAS) Concerns?

Brian Yates, P.E.

orian.yates@burgessniple.com				
614-459-2050 x 1416	(O)			
614-558-2689	(C)			