

Trends in Wastewater Disinfection Peracetic Acid (PAA)

County Sanitary Engineers Association of Ohio 2016 Summer Conference Lewis Center, OH Ed Pelton – Pelton Environmental EPelton@PeltonEnv.com

Table of Contents

- PART 1 Peracetic Acid
- PART 2 Wastewater Disinfection
- PART 3 Case Studies
- PART 4 Conversion Pathway
- PART 5 Equipment and Implementation
- PART 6 Experience

PART 1

Peracetic Acid

- Definition
- Disinfection
- Oxidation

Definition

An **organic peroxide** that results from the reaction between Acetic Acid, Hydrogen Peroxide and Water.

PAA exists only in **equilibrium** with the other components in aqueous solution.

PAA is a strong disinfectant and a strong oxidant.

Strong Disinfectant

PAA oxidizes **enzymes** (proteins) and **nutrients** inside bacteria cells, rendering them unviable.

These mechanisms enable PAA to disrupt bacteria effectively and efficiently (**low doses, short contact times**)

Strong Oxidant

The standard oxidation potential (at pH 7) of PAA is higher than most common oxidants.

Oxidant	Standard Potential (V)
Hydroxyl Radical	2.80
Ozone	2.07
Peracetic Acid	1.81
Hydrogen Peroxide	1.78
Potassium Permanganate	1.68
Chlorine Dioxide	1.57
Chlorine	1.36

PAA is a strong and effective oxidant - readily attacks bacteria as well as organic pollutants

Uses in Microbial Control

PART 2

Wastewater Disinfection

- Formulation
- EPA Label
- Efficiency
- Kinetics in Wastewater
- Properties
- Drivers for Conversion
- Conversion Steps

Formulation

Manufacturers are developing peracetic acid solutions that are specifically formulated for wastewater disinfection. POTW's should opt for these blends to reduce dosage requirements and operating costs. PeroxyChem's peracetic acid formulation for wastewater disinfection is registered and labeled as VigorOx[®] WWT II

Formulation

Equilibrium can be achieved at different PAA:H₂O₂:AA ratios

- \circ Increasing H₂O₂
 - Helps reduce PAA demand, reduces overall usage

Peroxv

- Increases Dissolved Oxygen (DO)
- Increasing Acetic Acid
 - Increases BOD

	VigorOx®	Other A	Other B	_
Peracetic Acid	15%	12%	22%	_
Hydrogen Peroxide	23%	18%	5%	
Acetic Acid	16%	20%	45%	
BOD (mg/L)	1.98	2.62	3.02	-
DO (mg/L)	0.93	0.94	0.32	
Net BOD (mg/L)	1.05	1.68	2.70	

Properties

Formulation	15% / 23%
Normal State	Liquid
Odor	Pungent "vinegar" smell
Density	1.16 g/mL (9.67 lb/gal)
Freezing point	-56 °F
рН	< 1
Solubility	Completely soluble
Stability	1 year at T < 84 °F
NFPA	 Flammability: flashpoint above 200 °F Health: short exposure cause injury Reactivity: decomposition at high temperature Oxidizer

Reactions in Wastewater

When **VigorOx WWT II** is added to **wastewater**, multiple reactions take place:

 VigorOx® WWT II
 > <u>Inactivation (reactions with bacteria)</u>

The inactivation and demand kinetics impacts the overall **efficiency** of PAA Disinfection (dose & contact time).

- Hydrogen Peroxide helps satisfy demand, improving efficiency
- TSS has little impact on efficiency
- Ammonia, nitrates and nitrites do not impact PAA performance or demand

Peracetic Acid in Wastewater

 PAA breaks down to water, oxygen and acetic acid (vinegar) upon reaction with microbes, organics, TSS and auto-decomposition

Efficacy – Demand

Significant disinfection is not observed until demand is satisfied

Disinfection Efficiency

Data from VigorOx WWT II on 57 secondary effluents. Range of Ct values reflects **site-specific PAA kinetics**.

PeroxyChem

Efficacy – Indicator Organism

Matrix	Organism	Inactivation (log)	Dose (mg/L)	Time (minutes)	Reference
Secondary effluent	Total coliform	2	1.5	20	Zanetti et al., 2007
Secondary effluent	Total coliform	2	2	16	Stampi et al. 2002
Secondary effluent	Total coliform	3	2	27	Koivunen et al,. 2005
Secondary effluent	Total coliform	4	1.5	20	Stampi et al., 2001
Secondary effluent	Total coliform	4	3	15	Madoni et al., 1998
Secondary effluent	Fecal coliform	3	2	16	Stampi et al. 2002
Secondary effluent	E. coli	2	1.5	20	Zanetti et al., 2007
Secondary effluent	E. coli	3	2	16	Stampi et al. 2002
Secondary effluent	E. coli	4	1.5	20	Stampi et al., 2001
Secondary effluent	E. coli	3	4	10	Dell'Erba et al., 2004
Secondary effluent	Enterococci	4	3	15	Madoni et al., 1998
Secondary effluent	Enterococci	2	2	16	Stampi et al. 2002
Secondary effluent	Enterococci	4	1.5	20	Stampi et al., 2001

PAA's efficacy against bacteria has been well documented

Drivers for Conversion

Drivers for Conversion to PAA

PAA can be the most economical disinfection alternative

Drivers – Chlorine Toxicity

Issue

Chlorine present in effluent is toxic to aquatic life in receiving water

Trigger

New Residual limit:

• Chlorine: 0.01 mg/L

Examples

- ON1 (1.5ppm PAA)
- CA2 (1.0ppm PAA)
- IL1 (1.0ppm PAA)
- FL1 (1.5ppm PAA)

Assessment of Alternatives				
	Cl2 + SBS	UV	VigorOx (PAA)	
Operating Cost	2 Chemicals	Power, Lamp/Ballast	1 Chemical	
	\$\$	\$\$	\$\$	
Capital Cost	Tank, Pump, Controller	System, Concrete	Tank, Pump, Controller	
	\$\$	\$\$\$\$	N/A	

PAA does not require quenching due to its low toxicity

Drivers – Chlorine DBPs

PAA does not produce TTHMs, Cyanide or NDMA

Drivers – Chlorine Demand

Issue			Trigger		Examples
 Low effluent quality results in extremely high chlorine doses (>40ppm) or low UV transmittance High Operating Cost Risk of non- compliance on: Residual, DBP, Bacterial Count. 			• TI • W • C	N2 (12ppm PAA) /A1 (10ppm PAA) A3 (8ppm PAA)	
Assessment of Alternatives					
		Cl2	UV		VigorOx (PAA)
Operating Cost	C	hemical	Power, Lamp/	Ballast	Chemical
		\$\$\$	\$\$\$*		\$\$
Capital Cost	E	Existing	System, Cor	ncrete	Tank, Pump,

PAA requires lower doses and shorter contact times than chlorine

\$\$\$\$

Controller

N/A

Drivers – Capacity

Issue

Current system (UV or Chlorination) does not have the capacity to meet Bacterial limit

Trigger

New Bacterial limit:

 from 200 to 23 cfu / 100ml

Examples

- TN1 (12ppm PAA)
- TX1 (3.5ppm PAA)
- CA2 (1ppm PAA)

Assessment of Alternatives				
	Cl2	UV	VigorOx (PAA)	
Operating Cost	Chemical	Power, Lamp/Ballast	Chemical	
	\$\$	\$\$	\$\$	
Capital Cost	New Contact Channel	System Expansion	Tank, Pump, Controller	
	\$\$\$\$	\$\$	N/A	

PAA can improve existing UV or work with existing contact tank

PART 3

Case Studies

- Florida
- New Jersey
- Tennessee
- Texas
- o Illinois
- Oregon
- Kentucky

St Augustine, FL

Plant Information

Effluent Source	Municipal
Average Flow	3.5 MGD
Peak Flow	5.0 MGD
Previous Disinfection	Chlor/Dechlor

Conversion to VigorOx WWT II

Conversion Driver	DBP, Toxicity
Conversion Date	Sep 2011
VigorOx System	Bulk

Disinfection Performance

Average Dose	1.5 ppm
Average Contact Time	30min
Indicator	F.C. /Entero
Limit	200/35cfu/100ml

Toxicity

Receiving water body Matanzas River Maximum Residual: 1.0 ppm

4 years of continuous use!

Hoboken, NJ

Plant Information

Effluent SourceMunicipalAverage Flow10 MGDPeak Flow20 MGDPrevious DisinfectionUV

Conversion to VigorOx WWT II

Conversion DriverUV PerformanceConversion DateNov 2015VigorOx SystemTote

Disinfection Performance

Average Dose2.5 ppmAverage Contact Time2 minIndicatorFecal ColiformLimit200 cfu/100ml

Toxicity

Receiving water body Hudson River Maximum Residual: N/A Achieved compliance after peracetic acid injected upstream aging UV

Memphis, TN

Plant Information

Effluent Source	Muni + Industrial
Average Flow	90 MGD
Peak Flow	200 MGD
Previous Disinfection	-

Conversion to VigorOx WWT II

Conversion Driver	Cost
Conversion Date	2017
VigorOx System	Bulk

017 Bulk

Disinfection Performance

Average Dose	12 ppm
Average Contact Time	45 min
Indicator	E. coli
Limit	126 cfu/100ml

Toxicity

Receiving water body Mississippi River Maximum Residual: 2.0 ppm

Automated Demand Control

2

PeroxyChem

Tullahoma, TN

Plant Information

Effluent Source	Municipal
Average Flow	3 MGD
Peak Flow	7 MGD
Previous Disinfection	Cl2 / SO2

Conversion to VigorOx WWT II

Conversion Driver	Toxicity / Safety
Conversion Date	2016 (trial in 2014)
VigorOx System	Tote

Disinfection Performance

Average Dose	0.75 ppm
Average Contact Time	45 min
Indicator	E. coli
Limit	126 cfu/100ml

Toxicity

Receiving water body Rock Creek (DF=1) Maximum Residual TBD

Low Toxicity in Small Stream

Pasadena, TX

Plant Information

Effluent Source	Industrial
Average Flow	15 MGD
Peak Flow	45 MGD
Previous Disinfection	Chlor / Dechlor

Conversion to VigorOx WWT II

Conversion Driver	Contact Tank Cost
Conversion Date	2014
VigorOx System	Bulk

Disinfection Performance

Average Dose	3.5 ppm
Average Contact Time	15 min
Indicator	E. coli
Limit	126 cfu/100ml

Toxicity

Receiving water body Bayou Channel Maximum Residual N/A

Shorter Contact Time

Mundelein, IL

Plant Information

Effluent Source	Municipal
Average Flow	1.0 MGD
Peak Flow	5.0 MGD
Previous Disinfection	Chlorination

Conversion to VigorOx WWT II

Conversion Driver	Dechlor Cost
Conversion Date	2015
VigorOx System	Tote

Disinfection Performance

Average Dose	0.5 ppm
Average Contact Time	120 min
Indicator	F. Coliforms
Limit	200 cfu/100ml

Toxicity

Receiving water bodyDes Plaines RiverMaximum Residual1.0 ppm

Avoid Cost and Complexity of De-chlorination

Clackamas, OR

Plant Information

Effluent Source	Municipal
Average Flow	7 MGD
Peak Flow	12 MGD
Previous Disinfection	Chlor/Dechlor

Conversion to VigorOx WWT II

Conversion Driver	Safety & Cost
Conversion Date	2014
VigorOx System	Tote to Bulk

Disinfection Performance

Average Dose	1.5 ppm
Average Contact Time	60 min
Indicator	E. coli
Limit	126 cfu/100ml

Toxicity

Receiving water body Willamette River Maximum Residual: 1.0 ppm

Chlorine Safety Concerns Elimination of RMP

Mayport Naval Station, FL

Plant Information

Effluent Source	Ships & Vessels
Average Flow	2 MGD
Peak Flow	4 MGD
Previous Disinfection	Chlor/Dechlor

Conversion to VigorOx WWT II

Conversion Driver	DBPs
Conversion Date	2015
VigorOx System	Tote to Bulk

Disinfection Performance

Average Dose	2.5 ppm
Average Contact Time	60 min
Indicator	F.C./Enterococci
Limit	200/35 cfu/100ml

Toxicity

Receiving water body St, John's River Maximum Residual: 1.0 ppm

Elimination of DBPs

Bowling Green, KY

Plant Information

Effluent Source	Municipal
Average Flow	7 MGD
Peak Flow	15 MGD
Previous Disinfection	UV

Conversion to VigorOx WWT II

Conversion Driver	UV Operating Cost
Conversion Date	2015
VigorOx System	Tote

Disinfection Performance

Average Dose	1.3 ppm
Average Contact Time	20 min
Indicator	E. coli
Limit	126 cfu/100ml

Toxicity

Receiving water body Barren River Maximum Residual 1.0 ppm

Replaced UV System – O&M

PART 4

Conversion Path

- Testing, Piloting and Trialing
- Process Modeling
- Compliance

Conversion Steps

Pilot Reactor Trialing

PeroxyChem's Disinfection Pilot Reactor (DPR) enables sidestream testing to measure effectiveness at different dose rates under varying effluent quality conditions.

On-line Residual Analyzer

Amperometric, Membrane-electrode Submersible Probe enables automatic PAA dose control. Third-party validated.

PART 5

Equipment & Implementation

- Bulk Systems
- Tote Systems

Implementation – Storage

Bulk Storage Considerations

- Acceptable materials include:
 - HDPE Linear (5yr max)
 - Passivated SS-304L
- Containment required (double wall acceptable)
- Product shelf life (C >15%)
 - 1 year, T < 86 °F
 - 4 months, T < 100 °F
 - 1 month, T < 110 °F
- Free-lift emergency relief manway and conservation vent
- Avoid overflow lines
- Unique quick connect for fill line (avoid contamination)
- Consider all local codes and regulations

Safety Considerations: containment, materials, venting, connections

Implementation – Storage

Tote Storage Considerations

- Containment required
- Never store on wooden pallets
- Do not store near reducing agents or combustibles (20 ft minimum distance)
- Do not block vents
- Indoor Storage
 - Ventilation of 1 ft³/min/ft²
- NFPA classification
 - Class IV Organic Peroxide
 - Does not support a flame
- Electrical
 - Intrinsically safe recommended for areas that are not well ventilated

Safety Considerations: containment, materials, venting

Implementation – Pumps

Pump Skid Considerations

- Duty and Redundant
- Peristaltic, Diaphragm or Solenoid acceptable
- Off-gas valve required at pump head for diaphragm and solenoid pumps
- Wetted Materials
 - Passivated 304L SS
 - Teflon
 - Santoprene[™] (peristaltic pumps)
- Controller
 - Flow-paced
 - Compound loop
- Containment Required

Safety considerations: redundancy, venting, containment, materials

Implementation – Piping

Piping Considerations

- Compatible wetted materials of construction (Teflon / 304SS)
- Vented ball valves
- Pressure relief valves to prevent PAA entrapment
- Dilution water / Flush line
- Flex Connections for Tanks / Totes / Pumps
- Gaskets
 - GORE-TEX®
 - Teflon
 - Garlock Gylon® Style 3504
- Thread sealant
 - White Teflon Tape (Do not use anti-galling tape)
 - Fluorolube®

Safety considerations: venting, materials, flushing, flex connections

Implementation – Control

New generation submersible probes validated for VigorOx

Implementation – Low Temp

Freezing Point:

- VigorOx WWT II -56°F
- Sodium Hypochlorite -20°F
- Sodium Bisulfate 43°F

No heat-tracing required with PAA

Low freezing point makes PAA ideal for cold weather applications

Methods of Chemical Supply

- Bulk deliveries of 4,000 gallons
- 300 gallon IBC totes
- 55 gallon drums.

Methods of Supply

Experience

Experience in OH.

- One replacement of Sodium Hypo, Steubenville, OH
- Ohio EPA position: currently the same as Chlorine low residual and ergo quenching required
- Pilot Testing in Cincinnati, OH
 - Acute toxicity testing
 - E Coli disinfection
 - CT evaluation

Questions? Comments?

Pelton Environmental Products Email: <u>EPelton@PeltonEnv.com</u> Phone: 440-838-1221

