
What to Expect from Ohio's Future Nutrient Regs ??

Agenda

- Nutrients, and their impacts on water quality
- Challenge of regulating nutrients
- OEPA's Nutrients Technical Advisory Group (TAG)
- Nutrient rule framework
- SNAP tool to assess nutrient enrichment in streams
- Rule implementation
- Adaptive management
- Impacts to NPDES permittees

What are Nutrients?

- Nutrients are <u>necessary</u> for growth of living organisms
- In natural water bodies, some amount of nutrients are necessary for healthy growth of aquatic organisms: fish, aquatic 'bugs' (macroinvertebrates), zooplankton and photosynthetic microorganisms (algae)
- BUT ... Too much nutrients can be bad!!
- Two principal nutrients of concern for water quality:
 - Phosphorus
 - Nitrogen

What is Nutrient Pollution? Why is it a Problem?

- Excess nutrients (phosphorus and/or nitrogen) can allow too much algae to grow – results ranging from unpleasant nuisance to hazardous algal blooms (HABs)
- Excessive growths result in nuisance that impair fishing and other recreational uses
- Algal decomposition results in oxygen depletion in the water – hypoxia ("dead zone") – killing aquatic life
- Excessive algal growth may lead to nonattainment of biocriteria (Ohio water quality criteria)
- Algae can produce taste and odor problems in water supplies

Algal Growth Nutrient Limitation

- Algae are the base of the food chain and essential to aquatic life in natural water bodies
- Algal growth may be limited by several factors
 - Sunlight

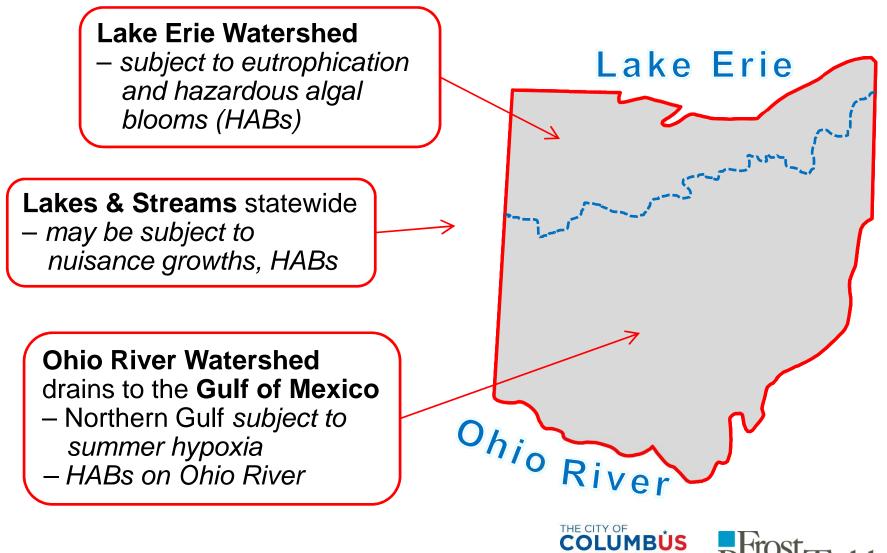
- CO_{2}
- Temperature Phosphorus

pН

- Nitrogen
- Algae will increase until their growth is limited by one or more of these factors
- In summer, algal growth is usually limited by nutrients
 - In salt/marine waters, nitrogen is usually the limiting nutrient
 - In freshwater, phosphorus is the primary limiting nutrient
- Phosphorus is the nutrient of concern for most Ohio waters

Nutrients of Primary Concern: **PHOSPHORUS**

- Measured as:
 - Total (TP)
 Total includes particulate and soluble forms of P
 - Dissolved (DP)
 "dissolved" is also called "soluble" or "orthophosphate"
- Dissolved P is essentially all bio-available,
- Particulate P can be converted in natural waters and become available also
- Phosphorus is usually the limiting nutrient in freshwater systems
- Phosphorus is generally the 'nutrient of concern' in Ohio waters


Nutrients of Primary Concern: **NITROGEN**

- Nitrogen is generally not a nutrient of concern for most Ohio waters
 - However, it is a major contributor to hypoxia in the Gulf of Mexico
- Nitrogen exists in several chemical forms:
 - Ammonia, Nitrate, Nitrite, Organic . . . DIN
 - Relevant form in Ohio rulemaking is Dissolved Inorganic Nitrogen (DIN)

Ohio Nutrient Impacts

DEPARTMENT OF PUBLIC UTILITIES

Estimated Phosphorus Contribution by Source

Basin	Point Sources	Nonpoint Sources
Lake Erie Basin ¹	21%	70%
Mississippi River Basin ²	12%	80%

Sources:

1 NCWQR (Heidelberg Univ.), Ohio EPA, Michigan DEQ, Lake Erie Task Force

2 USGS

The Challenge for Nutrient Rule Development

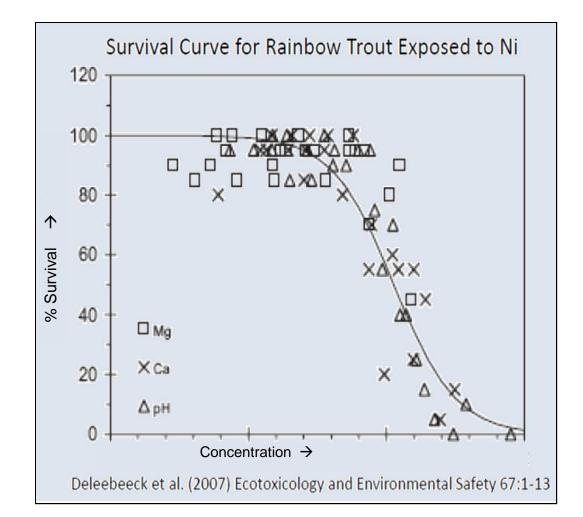
Water Quality Standards and Water Quality Criteria

- WATER QUALITY STANDARDS (WQS) have 2 key elements:
 - 1) Designated Uses e.g., aquatic life, water supply, etc.
 - 2) WATER QUALITY CRITERIA (WQC) protective of designated uses
- **WQC** may be either:
 - Numeric criteria: explicit chemical concentration values such as: *"TP* ≤ 0.05 mg/l"
 - Narrative criteria: description of acceptable conditions, such as "Free of phosphorus in quantities that cause algal blooms"
- Ohio also has **biological WQC** ("biocriteria")

Ohio's Biological WQC: BIOCRITERIA

- Numerical values that describe the biological condition of a water body necessary to protect a designated aquatic life use
- Biocriteria provide a direct measure of attainment of aquatic life uses, while chemical criteria provide an indirect measure
- Ohio has three indices based on species richness, trophic composition, diversity, presence of pollution-tolerant individuals or species, abundance of biomass, and the presence of diseased or abnormal organisms (OAC 3745-1-07)
 - IBI and Miwb (fish)
 - ICI (macroinvertebrates)
- Biocriteria take precedence over chemical-specific WQC for demonstration of aquatic life THE CITY OF use attainment

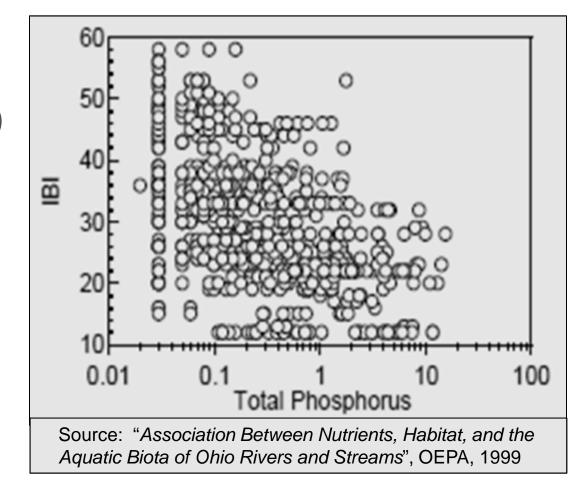
Types of Pollutants and Regulations to Control


- Conventional Pollutants: examples BOD₅, TSS, O&G
 - Impacts on WQ: depletion of dissolved oxygen; buildup of sludge and scum deposits
 - Regulatory control: typically technology-based effluent limits
- Toxic Pollutants: examples metals, pesticides, cyanide
 - Impacts on WQ: adverse effects to aquatic life including mortality, reduced growth or reduced reproduction
 - Regulatory control: WQC for each pollutant . . . Water qualitybased effluent limits (WQBEL) to assure receiving water body attains WQC for each pollutant

WQC based on Dose-Response Relationship

- Well-defined dose-response relationships
- Increasing dose (concentration) reaches a clear response (toxicity) level
- WQC can be applied independently

The Challenge for Regulating Nutrients


- Nutrients do not have direct toxic effects
- Simple dose-response relationships do not exist with nutrients
- Relationship between nutrients and aquatic life is indirect and complicated by other physical factors in the stream:
 - Habitat (measured by index: QHEI)
 - Stream morphology (depth, width, shape, slope, bed, banks)
 - Flow regime (may cause sedimentation and/or scouring)
 - Canopy (affects amount of sunlight striking stream)
 - Temperature
- 'One-size-fits-all' numeric WQC don't work for nutrients!

Field Nutrient Data Shows Overall Trend but Highly Variable Individual Measurements

- Scatter plot of TP concentration vs. IBI (biocriteria index value) for Ohio streams
- Data shows clear tendency for streams with higher TP concentrations to have reduced biocriteria scores, but impossible to predict biocriteria from a single TP value

OHIO NUTRIENT REDUCTION STRATEGY: The road from "free froms" to SNAP

- OAC 3745-1-04(E) Ohio EPA's narrative "free from" (1978)
- OAC 3745-1-07, Table 7-11 1.0 mg/l technology-based phosphorus limit for Lake Erie basin dischargers, as part of International Joint Commission (U.S. – Canada Agreement)
- The Associations Report Ohio EPA's reference stream approach (1999)
- TIC Trophic Index Criterion Ohio EPA's first stressor response approach to nutrients (2013)
- SNAP Stream Nutrient Assessment Procedure (2015)

OHIO NUTRIENT REDUCTION STRATEGY: 1978 - 1999 Case-by-Case based on existing OEPA nutrient rules

OAC 3745-1-04(E) (First adopted 2/14/78):

"To every extent practical and possible . . . all surface waters shall be free from nutrients entering the water as a result of human activity in concentrations that create nuisance growths of aquatic weeds and algae."

 3745-1-07 (Table 7-1): limited to lake Erie basin – as part of the U.S.- Canada Agreement

"In areas where such nuisance growths exist, phosphorus discharges from point sources determined significant by the director shall not exceed a daily average of 1 mg/l, or such stricter requirements as may be imposed by the director . . ."

OHIO NUTRIENT REDUCTION STRATEGY: 1999 The 'Associations Report' (January 7, 1999)

- Study of unimpacted smaller streams found that TP concentrations were typically < 0.1 mg/l.
- Application of Associations Report to TMDLs: de facto TP Water Quality Standard of 0.11 mg/l.
- Based on U.S. EPA's initial recommendation that states develop numeric standards using the reference stream approach.
- Reference stream approach criticized by U.S. EPA Science Advisory Board, and ultimately rejected by the federal courts in Florida.

OHIO NUTRIENT REDUCTION STRATEGY: 2013 TIC: Trophic Index Criterion

- To better reflect the nutrient-aquatic life relationship and develop a defensible cause-effect connection, OEPA proposed the TIC.
- TIC determined trophic condition of a stream acceptable, threatened, or impaired – based on weighing of four indicators of water quality: biocriteria, DO swing, Chlorophyll-*a*, and nutrients (TP, DIN).

From TIC to TAG to SNAP

- TIC put out for Early Stakeholder Outreach (ESO) in 2013
- At a high level, the Comments were generally favorable and endorsed the multi-metric biologically-based approach to establishing nutrient WQS
- At ground level, a substantial number of questions and concerns about the TIC were raised
- OEPA created a stakeholder-based technical advisory group ("TAG")
- In coordination with OEPA, the Technical Subgroup of the TAG used the TIC as a starting point to develop an improved assessment tool: the Stream Nutrient Assessment Procedure ("SNAP")

Cause-Effect Demonstration for Phosphorus

- The adequacy of the cause-effect demonstration for phosphorus is the most significant factual and legal dispute associated with new phosphorus water quality criteria.
- Under all state and federal CWA permitting programs, WQBELs placed into NPDES permits must be supported by a demonstration that the discharge, either alone or in conjunction with other discharges, has the "reasonable potential" to cause or contribute to a violation of applicable water quality criteria.

US EPA Mandate for Nutrient Criteria

- US EPA Nutrient Strategy (1998 2001)
 - States required to develop regional, scientifically defensible criteria
- US EPA guidance and States' rulemaking
 - Eco-region based criteria: "reference site" approach
 - Example: typical Guidance TP criteria ~0.07 mg/l
 - Guidance did not promote "effects-based" approach
 - Slow progress by most states
 - Contentious nutrient rulemaking in Florida (2008-14)
- In 2010, EPA's Science Advisory Board critical of US EPA's approach
 - WQ Criteria should be based upon:
 "stressor-response" ("cause and effect")

USEPA Mandate (cont.)

Different Approaches for Nutrients Control Regulation

Independent Application

US EPA

- All WQ criteria must be applied individually
- Nutrient criteria must be met regardless of whether biological criteria are attained

Weight of Evidence

Ohio EPA

- Assessment to determine whether nutrients are cause of non-attainment
- Only if nutrients are cause or threat, then nutrient control actions must be imposed

Biological Stressors for Eutrophication

Nutrients

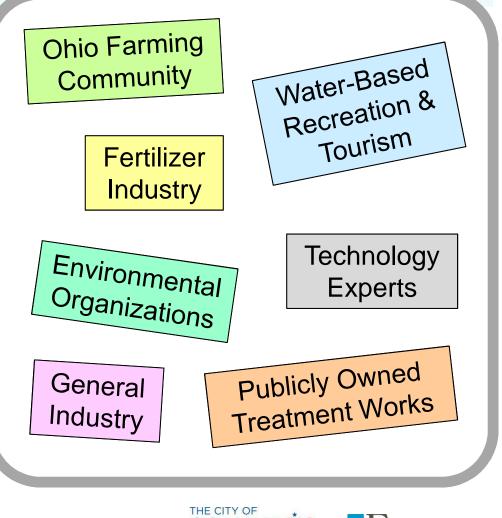
- Stream morphology
- Flow (impoundments, sedimentation, scouring)
- Canopy
- Riparian vegetative cover
- Salinity (TDS), other water chemistry

Habitat

Reducing nutrients without solving habitat problems will not attain biocriteria WQS!

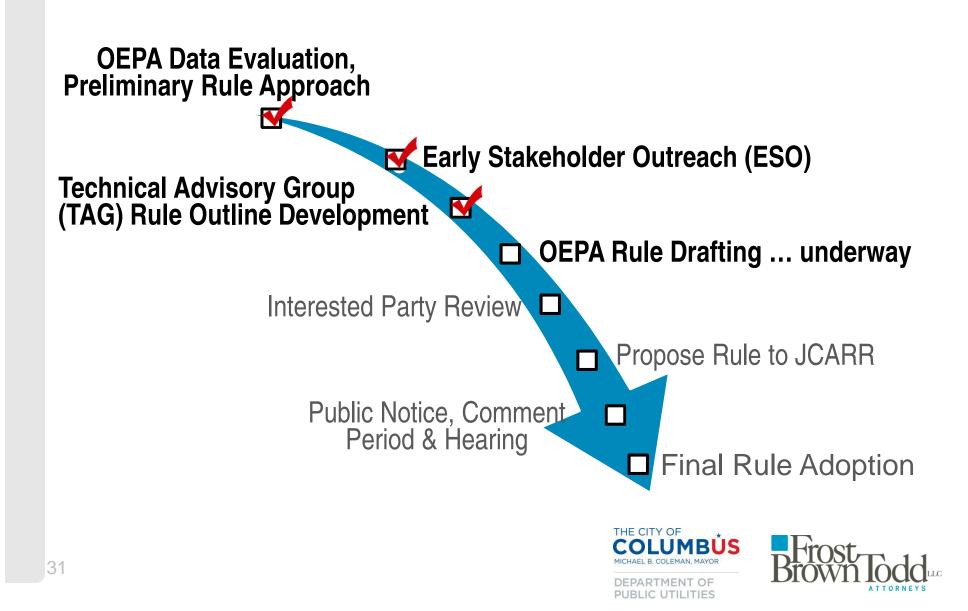
Biological Indicators & Response Variables

- Ohio's biological water quality criteria indices ("biocriteria"):
 - ICI (macroinvertebrates)
 - IBI, MIwb (fish)
- Algal growth response variables
 - Measurement of chlorophyll
 - Diurnal dissolved oxygen swings


Ohio Nutrient Rule Development

Nutrients Technical Advisory Group (TAG)

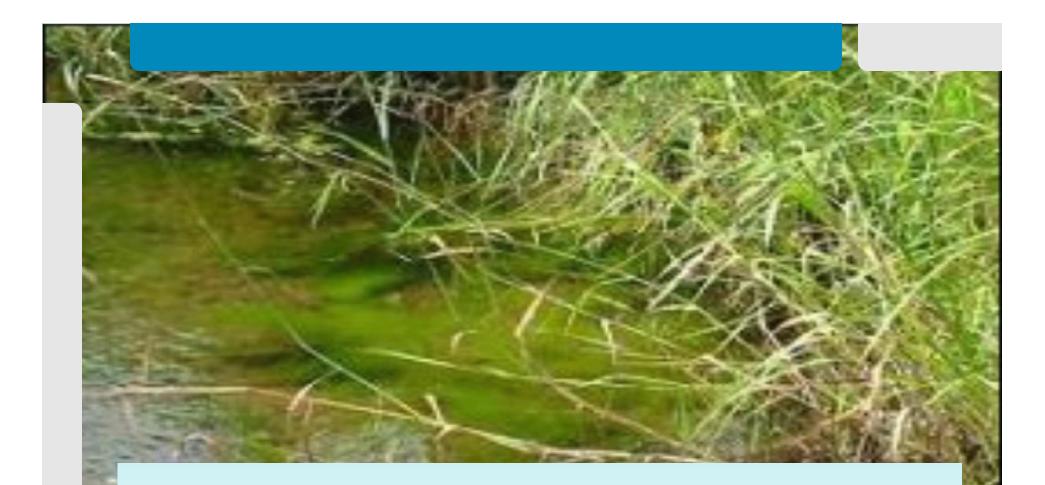
- Unique approach for OEPA; first-time for such major rulemaking
- External members, representing all stakeholder groups
- TAG given mission to develop nutrient rule recommendations


TAG Effort for Nutrient Rule Development

- Nov 2013 Jun 2015:
 - 15 meetings of full TAG membership + observers
 - Numerous committee and 'sub-group' meetings
- OEPA provided staff consultation
- TAG developed new tool (based upon OEPA prototype) to assess nutrient enrichment condition
- TAG developed nutrients WQS rule framework, including detail aspects for implementation issues
- TAG submitted draft rule framework to OEPA (October & December 2015)

Pathway to Ohio Nutrients Rule

- TAG has developed a rule framework with specific recommendations for OEPA to use in drafting nutrient rules for Ohio
- Today's presentation summarizes the nutrient rule framework as developed by TAG
- Draft rule to be proposed by Ohio EPA may be different!



Ohio Nutrient Rule Concept

- Assess stream to determine whether nutrient-caused WQ problem exists
 - Nutrients require a 'new' way of thinking re: nonattainment
 - New assessment tool developed by TAG based upon OEPA prototype using weight of evidence evaluation
- 2. <u>IF</u> nutrients impair or threaten stream WQ, then (*and only then*) implement actions to improve WQ and achieve attainment
 - Implement initial management actions
 - Use Adaptive Management (AM)

SNAP (Stream Nutrient Assessment Procedure)

SNAP

(Stream Nutrient Assessment Procedure)

A new tool for Ohio:

- "Weight of Evidence" assessment of nutrient enrichment status in a stream segment
 - Looks at multiple measures to assess potential nutrient enrichment
- Two-part assessment procedure:

Basis of SNAP

FIRST: Determine biological WQ criteria attainment

Biocriteria are a direct measure of WQ designated use attainment

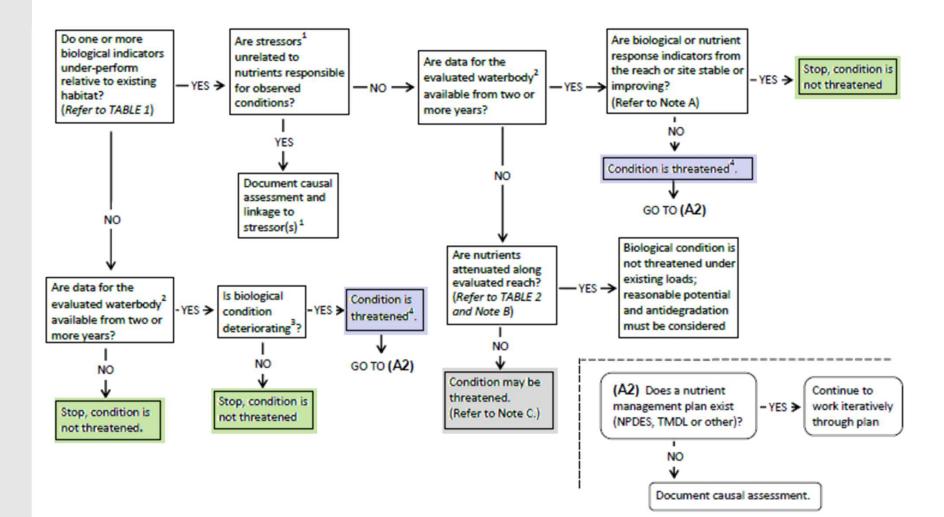
AND: Evaluate key nutrient response indicators

- **24-hour DO swing** (max DO min DO)
- Benthic chlorophyll-a

THEN: Confirm preliminary condition assessment

- Other stressors habitat or pollutants?
- If not impaired, determine if threatened

* Note that nutrient concentration is not incorporated. Nutrient concentration is poorly correlated with nutrient-caused impairment!!


dZ

Stream Nutrient Assessment Procedure (SNAP)

Step 1	Step 2	Step 3	Step 4	
Biological Criteria	DO Swing	Benthic Chlorophyll	Preliminary Assessment: Nutrient Enrichment Status	
All indices attaining or non-significant departure	Normal or low swings (≤6.5 mg/l)	Low to moderate (≤320 mg/m ²)	Attaining use / not threatened	
		High (>320 mg/m²)	but may be	See Flow Chart A
	Wide swings (>6.5 mg/l)	Low (≤182 mg/m²)		
		Moderate to high (>182 mg/m ²)		
Non-attaining (one or more indices below non-significant departure)	Normal or low swings (≤6.5 mg/l)	Low to moderate (≤320 mg/m²)	Impaired, but cause(s) other than nutrients	See Flow Chart B
		High (>320 mg/m²)	Impaired / likely nutrient enriched	See Flow Chart C
	Wide swings (>6.5 mg/l)	Low (≤182 mg/m²)		
		Moderate to high (>182 mg/m ²)	Impaired / Nutrient enriched	

SNAP FLOW CHART A

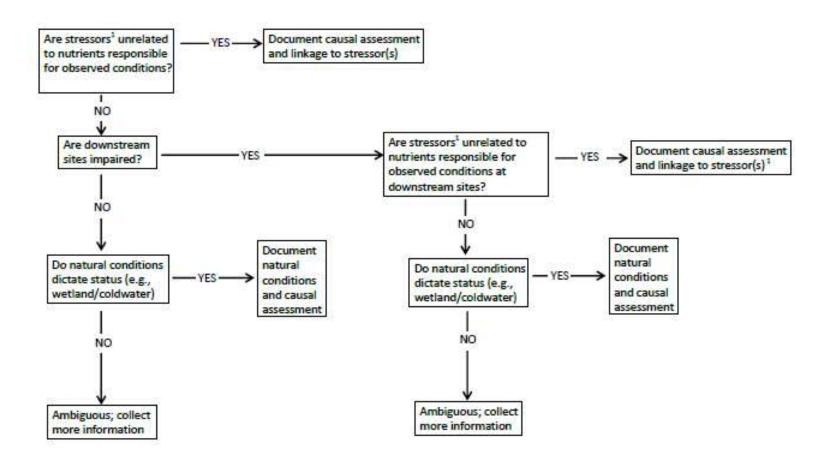
Decision matrix for determining when biologically attaining condition status is threatened

SNAP: FLOW CHART A. Determines if biology is threatened

- Used when:
 - biological criteria are attaining (may be 'under-performing')

BUT

- Nutrient response indicator(s) are elevated (DO swing and/or benthic chlorophyll)
- Possible assessment outcomes:
 - Not threatened
 - Threatened by other (non-nutrient) causes
 - Threatened by nutrients



SNAP FLOW CHART B

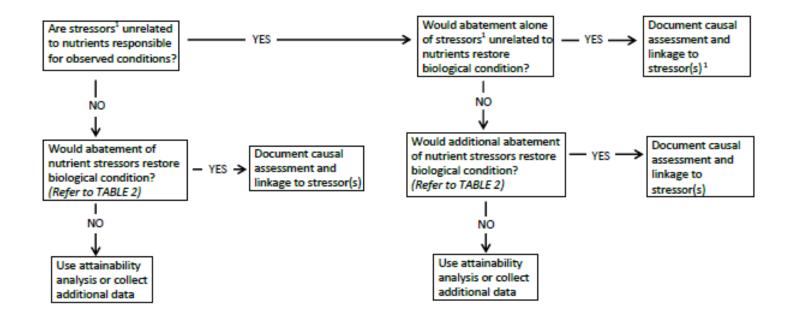
Decision tree for determining biological impairment caused by stressors other than nutrients

SNAP: FLOW CHART B. Determines when biological impairment may be caused by stressors other than nutrients

- Used when:
 - one or more biological criteria are non-attaining

BUT

- No nutrient response indicators are elevated (DO swing or benthic chlorophyll)
- Possible assessment outcomes:
 - Stressors other than nutrients cause impairment
 - Natural conditions / habitat cause impairment
 - Ambiguous . . . collect more information



Reader's

SNAP FLOW CHART C

Decision tree for confirming biological impairment caused by nutrients

SNAP: FLOW CHART C.

Confirms when biological impairment is caused by nutrients

- Used when:
 - One or more biological criteria are non-attaining

AND

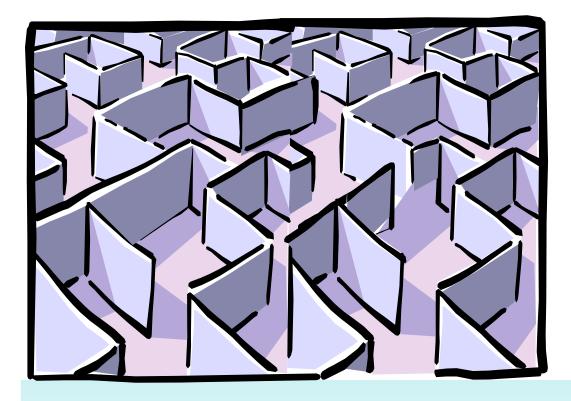
- Either nutrient response indicator is elevated (DO swing or benthic chlorophyll)
- Possible assessment outcomes:
 - Abatement of nutrients will "materially improve" biology
 - Abatement of nutrients will not "materially improve" biology; Perform Use Attainability Analysis, or collect additional data
 - Stressors other than nutrients cause impairment

Reader's

version

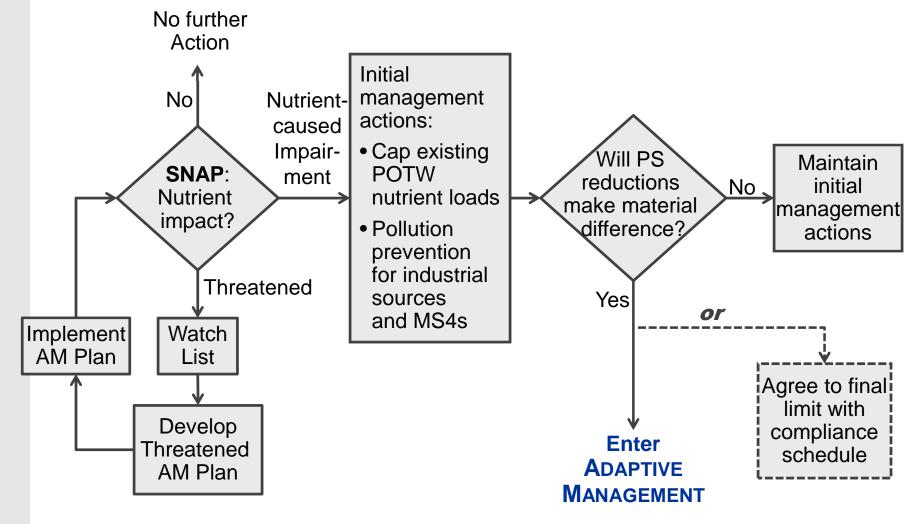
Stream Nutrient Assessment Procedure (SNAP)

	Step 1	Step 2	Step 3	Step 4	
	Biological Criteria	DO Swing	Benthic Chlorophyll	Trophic Condition Status	
All indices attaining or non-significant departure	Normal or low swings (≤6.5 mg/l)	Low to moderate (≤320 mg/m²)	Attaining use / not threatened		
		High (>320 mg/m²)	Attaining use, but may be threatened	See Flow Chart A	
	Wide swings (>6.5 mg/l)	Low (≤182 mg/m²)			
		Moderate to high (>182 mg/m ²)			
Non-attaining (one or more indices below non-significant departure)	Normal or low swings (≤6.5 mg/l)	Low to moderate (≤320 mg/m²)	Impaired, but cause(s) other than nutrients	See Flow Chart B	
		High (>320 mg/m²)	Impaired / likely nutrient enriched	See Flow Chart C	
	Wide swings (>6.5 mg/l)	Low (≤182 mg/m²)			
		Moderate to high (>182 mg/m ²)	Impaired / Nutrient enriched		

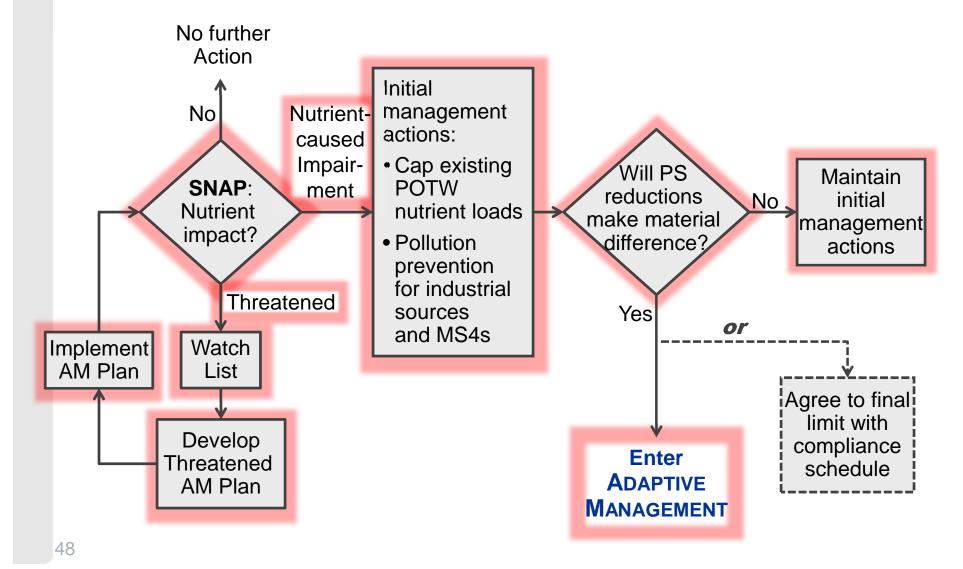

Where will SNAP apply?

- SNAP will apply where:
 - Free-flowing stream segments
 - Designated aquatic life uses
 - Drainage area less than 1,000 sq.mi.
 - Benthic algae (attached to rocks in streambed) dominates over sestonic algae (suspended in the water)
- SNAP will <u>not</u> apply:
 - Large rivers: where sestonic algae dominate over benthic algae
 - Generally: drainage area >1,000 sq.mi.
 - Or segments with drainage area 500 -1000 sq.mi. that behave more like large river segments
 - Headwater and small streams

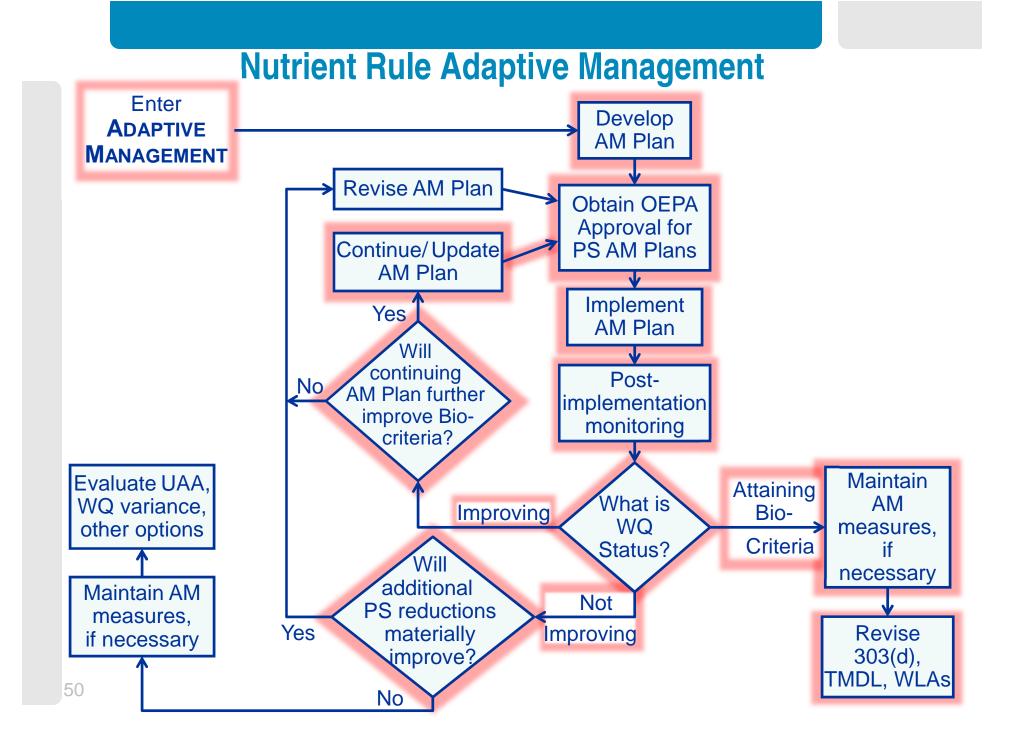
dz



Rule Implementation Framework



Nutrient Rule Implementation



Nutrient Rule Implementation

Nutrient Rule Adaptive Management

Target Concentrations & Target Loads

IF SNAP determines stream segment is either impaired or threatened by nutrients . . .

 Water Quality Target Load (WQTL) shall be determined for total phosphorus (TP) only,

UNLESS

 If nitrogen is found to be limiting or co-limiting, then WQTL shall be determined for dissolved inorganic nitrogen (DIN)

Water Quality Target Concentration

- a) If necessary data available or readily available, calculate water quality target concentration (WQTC) using WQ modeling based on achieving stream segment
 - DO swing \leq 6.5 mg/l, and
 - Benthic chlorophyll $a \le 320 \text{ mg/m}^2$
- b) If necessary data not available, use provisional WQTC
 - TP = 0.40 mg/l
 - DIN = 3.6 mg/l

dz

dz

52

Water Quality Target Load

Using WQTC as developed, calculate WQTL:

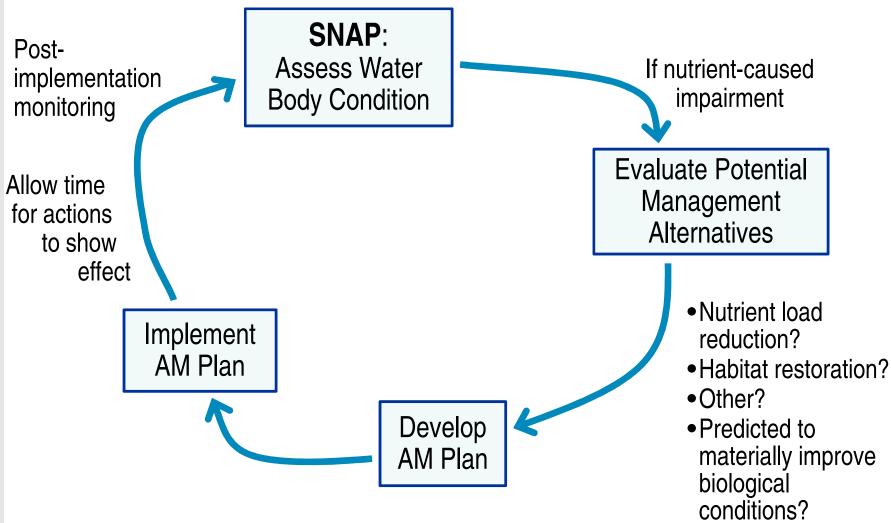
WQTL = (WQTC) x (stream flow)

- Stream flow exceeded 80 percent of time during growing season [20th percentile]
 - 20th percentile flow > 7Q10 flow used to develop wasteload allocations for other pollutants
- WQTL may be used to determine:
 - WLAs and LAs in TMDLs
 - Permit limits

Adaptive Management

Adaptive Management (AM)

- AM is an iterative process to design and implement cost-effective management actions to abate impairments to water quality caused in whole or part by nutrients
- Because of uncertainty about causal and restorative links between aquatic biology, nutrients, and other stressors – AM provides opportunity to implement alternatives, evaluate effectiveness, then adapt and continue implementation


Adaptive Management Plans

- Developed by: permittee (PS); watershed partners (NPS)
- Submit: for approval (PS to OEPA); for endorsement (NPS to OEPA & ODNR)
- For point sources, approved AM Plan becomes part of the NPDES permit
 - ... therefore enforceable!
- Following implementation, monitoring & assessment: AM Plan to be maintained and/or revised, and implementation continued

Adaptive Management

AM Plan Elements

- One or more management alternatives
 - designed to materially improve biological conditions and reduce adverse nutrient impacts
- Description of actions to be taken (who/what/when)
- How AM actions will be maintained
- Implementation time schedule
- Estimated cost and benefits
- Post-implementation monitoring program

Potential AM Plan Alternatives

- Nutrient reduction
 - Wastewater treatment nutrient removal
 - NPS nutrient load reduction
- Riparian and habitat restoration and improvement
- Effluent trading
- Watershed management practices
- Other actions

Objective: reduce nutrient loading, or implement other watershed improvement to reduce nutrient-related biological impairment

Implementation in Permits

- SNAP assessment will result in one of four findings:
 - 1) No nutrient-caused impact to biocriteria
 - 2) Nutrients are threatening attainment of biocriteria
 - 3) Nutrients are causing impairment of biocriteria
 - 4) Factors other than nutrients are causing impairment
- If no nutrient-caused impairment (#1 or #4),
 <u>NO</u> nutrient permit limits

If Nutrients are Threatening Attainment

IF SNAP shows threat to stream segment's designated aquatic life use

- Permits to existing point sources will:
 - Cap existing POTW nutrient loads at existing effluent quality (EEQ)
 - Require pollution prevention measures for industrial point sources

If Nutrients are Cause of Impairment

IF SNAP shows nutrients are <u>material cause</u> of impairment, OEPA will:

- Initial action: Cap existing POTW nutrient loads at EEQ, and require pollution prevention for industries
- Evaluate whether PS nutrient load reductions <u>alone</u> will materially improve stream biology
- *Then* PS shall either:
- Develop & implement adaptive management plan (AMP)
 OR
- Comply with final permit limits & compliance schedule

dz

When to Impose Nutrient Controls

 Nutrient controls (WQTL or AM) <u>only</u> if PS nutrient reductions alone will result in material improvement in biocriteria scores

 Permit controls for TP only, unless evidence that DIN is limiting or co-limiting

Considerations Prior to Permit Limits or AMPs

OEPA must consider:

- Technical feasibility of meeting limits / implementing AMP
- Projected environmental benefits of meeting limits / AMPs and compliance schedules
- Costs, cost-effectiveness, and affordability of implementing measures to meet limits / AMPs

dz

NPDES Permit Compliance Schedules

- May extend to multiple permit cycles
 - Particularly important for AM
- Provide time for evaluation of technical feasibility, environmental benefits, costs, and affordability
- Allow time to perform engineering studies to evaluate alternatives
- Allow time for detailed design, contract bidding, construction, startup & initial process troubleshooting

Numeric Permit Limit Details

- Nutrient limits to be imposed as seasonal average for growing season (typically May - October)
- Nutrient limits to be imposed as mass loads
- Interim limits cannot be imposed:
 - If facility improvements to achieve interim limits would substantially increase cost of subsequent modifications to achieve anticipated final limits
 - If no reasonable expectation that interim limits will materially improve biological condition

dZ